Sensitivity analysis of the water balance simulated by WaNuICAS model: a case study of complex cocoa agroforestry systems in Cameroon

cirad
 AGRICULTURAL RESEARCH for development

S. Fayolle ${ }^{1,2}$, A. Metay ${ }^{1,3}$, S. Saj ${ }^{1,4}$, E. Justes ${ }^{1,2,5}$
1 UMR SYSTEM, Univ Montpellier, CIHEAM-IAAM, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
2 UMR SYSTEM, CIRAD, Montpellier, France
3 UMR SYSTEM, Montpellier SupAgro, Montpellier, France
4 UMR SYSTEM, CIRAD, Guyane, France
5 PERSYST Department, Montpellier, France

- INTRODUCTION

Climate change is predicted to induce modifications of rainfall regimes. In Central Cameroon, cocoa trees are already cultivated in sub-optimal pedoclimatic areas. Yet, local systems include many complex agroforestry systems (cAFS) which response to drought is currently debated (Abdulaï et al, 2018). Models like WaNuLCAS (van Noordwijk et al, 1999) are powerful tools to explore a wide set of agroecosystems functioning scenarios.

HYPOTHESES: WaNuLCAS is able to (i) correctly model water functioning in cocoa cAFS; (ii) represent changes in water fluxes induced by modifications of AFS structure, soil properties and rainfall.

OBJECTIVES: Produce a sensitivity analysis to evaluate WaNuLCAS functioning and its ability to represent changes in water fluxes in cocoa cAFS.

- MATERIAL AND METHODS

Water, Nutrient and Light Capture in Agroforestry System (v4.3) has proven to be efficient at modelling a wide variety of agroforestry systems (AFS) but HAS NOT YET BEEN USED IN TREE-TREE INTERACTION.

The model has been parameterized using several data sets:

- Weather data : 30 years of daily data from 5 site in sub-Saharian Africa (Fig 2; Africa Rice project)
- Characterization of cAFS in Central Cameroon as in Nijmeijer (2017)
- Tree positions among cAFS in Bokito as shown in Jagoret et al (2017) and typical cAFS in Cameroon :
\rightarrow Highly heterogeneous 7 ESFM: Ecosystem Services Functional Motifs
\rightarrow High species richness
(ESFM; Rafflegeau et al., 2019; Fig 2 A) as basic
bricks of the AFS for modelling

- SENSITIVITY ANALYSIS FRAMEWORK

Three variable categories (inputs) are selected for their impact on cAFS water balance

1. Soil characteristics (depth and composition) \rightarrow soil water availability by changing the soil volume and water soil conductivity.
2. Weather (Fig 1) \rightarrow rainfall quantity and distribution (unimodal vs bimodal). Six replicates of five years \rightarrow climatic variability within site
3. AFS structure \rightarrow trees' combinations based on 10 ESFM (Fig 2A). representing most of the situations encountered in cocoa-crop in Sub-Saharian Africa.

Categories of observed outputs of the model:

- Soil water availability (water stock in soil)
- Trees water uptake and transpiration vs evaporation
- Cocoa production and other product (wood, fruits...)

CONCLUSION \& PERSPECTIVES

First results of the sensitivity analysis is able to provide in silico data to assess the ability of WaNuLCAS to model cocoa complex agroforestry systems. We identified needed technical adaptations of the modelling chains which shall be carried with its design team at ICRAF (Bogor, Indonesia). Predictions using the model will require fieldwork to ensure an optimal calibration/validation --> work planned in 2020 in Cameroon for analyzing the functioning of cocoa AFS.

Fig. 1: A : Monthly rainfall (mm) in the five studied regions over 30 years. B. Positions of the stations

Fig. 2: A: Ten Ecosystem Services Functional Motifs from cocoa monoculture to complex cocoa agroforestry systems. B : Species used and their roots distribution

Fig. 3: A : Sensitivity analysis framework; B : Example of expected results . Variability of water stock in soil in relation to the soil depths (deep vs shallow) and composition (high clay " + " vs high sand "-" content

REFERENCES

[^0]
[^0]: Abdulai, I. et al. Cocoa AFS is less resilient to sub-optimal and extreme climate than cocoa in full sun. Glob. Change Biol. 24, 273-286 (2018). Jagoret, P. et al. Structural characteristics determine productivity in complex cocoa agroforestry systems. Agron. Sustain. Dev. 37, (2017). Nijimeijer, A., 2017. Influence du préćédent sur les trajectoires des systèmes agroforestiers à base de cacaoyers à Bokito (Centre Cameroun) : étude à lon terme sur une sélection de caractéristiques écosystémiques. Thèse de doctorat, Univ Montpellier, France
 Rafflegeau et al, 2019 . Ecosystem Services Functional Motif: : a new conce
 World Congress on Agroforestry, 20-22th May 2019, Montpelier, France
 Saj, S., et al., 201.
 156 , $95-104$.
 Van Noordwijk, M. \& Lusiana, B. WaNuLCAS, a model of water, nutrient and light capture in agroforestry systems. in Agroforestry for Sustainable Land-Use Fundamental Research and Modelling with Emphasis on Temperate and Mediterranean Applications: Selected papers from a workshop held in Montpellier, France, $23-29$ June 1997 (eds. Auclar, D. \& Dupraz, C.) 217-242 ((pringer Netherlands, 1999).

