Spatial variation of earthworm communities and soil organic carbon in temperate agroforestry Fondation

CARDINAEL Rémi^{a,b,c}, HOEFFNER Kevin^d, CHENU Claire^b, CHEVALLIER Tiphaine^a, BERAL Camille^e, DEWISME Antoine^d, CLUZEAU Daniel^d

Context & problematic

8

de France

Agroforestry systems in temperate regions : Silvoarable systems associating parallel tree rows and annual intercrops

ecirad

Soil Organic Carbon (SOC) usually increased in silvoarable systems compared to treeless agricultural fields

Earthworms communities impacted by Soil characteristics (Bouché, 1972; Lee, 1985) Soil occupation (Decaëns, 2008; Cluzeau, 2012)

^a UMR Eco&Sols, IRD, CIRAD, INRA, Montpellier SupAgro, Univ Montpellier, France ^b UMR Ecosys, AgroParisTech, Thiverval-Grignon, France ^c UPR AIDA, CIRAD, Univ Montpellier, France (present address)

ECOBIO

AgroParisTech

^d UMR ECOBIO CNRS, University of Rennes 1, France

OSUR

Observatoire

de **Renne**s

remi.cardinael@cirad.fr

Do temperate agroforestry systems influence earthworm abundance,

and richness ?

Alley

Agricultural practices (Chan, 2001, Pélosi, 2014)

Tree

row

Several studies in tropical agroforestry systems (Hauser, 1993; Hauser et al. 1998; Fonte et al. 2010)

Materials & methods

Earthworms and SOC **13** agroforestry systems in France sampled in

Different soil properties and agricultural practices three modalities :

- Control (treeless system)
- Alley (agroforestry system)
- **Tree row** (agroforestry system)

Control, treeless

Alley

Earthworms sampling and lab. analysis

^eAgroof, Anduze, France

biomass

Chemical extraction

Hand sorting

Sampling protocol was repeated 3 times 24000 earthworms collected, identified to the species level (Bouché, 1972) and weighed.

Soil Organic Carbon sampling

500-cm³ cylinder every 10 cm down 30 cm depth Sampling protocol was repeated 3 times Analysed using a CHN elemental analyzer

Statistical analysis

Statistical analyses commonly applied in meta-analysis (effect sizes) For the adult earthworm individual mean weight, for each ecological category, differences between tree row, alley and control plot were assessed using a multiple linear model

Results

2.0

Between 11 and 28 m

SOC, earthworm abundance, biomass and richness

 289 ± 85 595 ± 168 Mean abundance of earthworms: 238 ± 124 (i/m² ± 95% CI) Alley Control **Tree row** Tree row vs Control Tree row vs Control Alley vs Control Alley vs Control ▲ Tree row vs Alley ▲ Tree row vs Alley -0.5 -0.25 0.25 -2.0 0.5 0.0 0.0 -1.0 1.0 SOC stock Earthworm Total Abundance Tree row vs Control Tree row vs Control Alley vs Control Alley vs Control

Individual mean weight

Highlights

SOC	Control < Alley << Tree row	 SOC stocks higher in tree row than in alley and control 	Despi
Earthworm	Control = Alley << Tree row	 Earthworm abundance and total biomass higher in tree row than 	earth
ab. & bm.		in alley and control	absen
Earthworm	Control = Alley < Tree row	• Earthworm abundance and total biomass not different between	rows
richness		alley and control	factor
Individual	Control ≥ Alley ≥ Tree row	 Earthworm richness significantly higher in tree row than in alley 	eartin
mean weight		 Individual mean weight higher in the control than in the tree row 	REFE

Conclusion

e higher SOC stocks in the tree rows, the amount of available C per orm individual was lower compared to those in the control. The e of disturbance (no tillage, no fertilizers, no pesticides) in the tree rather than increased SOC stocks therefore seems to be the main explaining the increased total abundance, biomass, and diversity of vorms

ENCE: Cardinael et al., 2019 Biology and Fertility of Soils 55(2):171-183