Organic carbon decomposition rates with depth under an agroforestry system in a calcareous soil

CARDINAEL Rémi^{1,2,3}, CHEVALLIER Tiphaine², GUENET Bertrand⁴, GIRARDIN Cyril⁵, COZZI Thomas³, POUTEAU Valérie⁵, CHENU Claire³

¹CIRAD, UPR AIDA, Montpellier, France (present address) ² IRD, UMR Eco&Sols, Montpellier, France ³ AgroParisTech, UMR Ecosys, Thiverval-Grignon, France ⁴ CNRS, LSCE, Gif-sur-Yvette, France ⁵ INRA, UMR Ecosys, Thiverval-Grignon, France

remi.cardinael@cirad.fr

Introduction

- Agroforestry systems increase soil organic carbon (SOC) stocks (Cardinael et al., 2015, 2017, 2018a,b), but little is known concerning the potential decomposition rate of SOC at different depths.
- SOC dynamics have poorly been studied under Mediterranean climate due to the presence of soil inorganic carbon (SIC) in soils (Chevallier et al. 2016).

Study site

Silty and carbonated Fluvisol.

- Hybrid walnuts (Juglans regia × nigra) planted in 1995. Density: 110 trees ha⁻¹.
- Durum wheat (Triticum turgidum L. subsp. Durum), sown in the alleys and in the agricultural control plot.

Objectives of the study

> Assess SOC mineralisation potential as a function of soil depth in an agroforestry plot compared to an agricultural control plot.

 \succ Estimate the contribution of SIC to CO₂ emissions at different depths.

Materials and methods

- Soil cores sampled in agricultural control plot, in agroforestry tree rows and alleys
- Measures of SOC and SIC contents (Micro-GC) and their respective $\delta^{13}C_{SOC}$ and $\delta^{13}C_{SIC}$ (IRMS Micro-Gaz)
 - [SIC] and $\delta^{13}C_{S/C}$: orthophosphoric acid dissolution 0
 - [SOC] and $\delta^{13}C_{SOC}$: 550°C treated soil Ο
- Soil incubation (duration 44 days):
 - 4 replicates per location: Control; Tree row; Alleys 0
 - 4 depths : 0-10; 10-30; 70-100 and 160-180 cm (n=48). Ο
 - 40 g soil placed in 500 ml jars 0
 - Moisture pF 2.5 20°C, microbial biomass measured at the end Ο
- Measures of the amount and the $\delta^{13}C$ of the CO₂ emitted from soils
- CO_2 measured = CO_2 organic + CO_2 inorganic

$\delta^{13}C-CO_2 = f_{S/C} \times \delta^{13}C_{S/C} + (1-f_{S/C}) \times \delta^{13}C_{SOC}$ where $f_{S/C}$ is the contribution of SIC to CO_2 emissions.

	Depth	SOC concentration (mg C g ⁻¹ soil)			SIC concentration (mg C g ⁻¹ soil)		
	(cm)						
		Control	Alley	Tree row	Control	Alley	Tree row
-	0-10	7.4 ± 0.4bA	8.1 ± 0.5bA	16.9 ± 2.3aA	61.6 ± 0.9aA	54.9 ± 2.3aAB	58.4 ± 2.8aA
	10-30	7.6 ± 0.1bA	8.1 ± 0.5bA	8.5 ± 0.6aB	62.3 ± 1.5aAB	62.9 ± 3.7aAB	58.8 ± 2.0aA
	70-100	5.3 ± 0.3aB	5.3 ± 0.1aB	5.1 ± 0.3aC	56.0 ± 2.7aABC	48.0 ± 1.2aA	50.1 ± 1.9aA
	160-180	5.0 ± 0.5aB	4.8 ± 0.4aB	4.3 ± 0.4aC	52.5 ± 1.4aC	48.7 ± 1.7aA	52.5 ± 2.1aA

Table 1. SOC and SIC concentrations.

Results

CO₂ from SOC

 CO_2 from SIC

- Soil heterotrophic respiration was only higher under tree rows at 0-10 cm. CO₂ emissions decreased dramatically with soil depth.
- In topsoil layers, most CO₂ derived from SOC. \bullet In deep soil layers, most CO₂ derived from SIC.

Depth (cm)	Location	k_1 (day ⁻¹)		
	Tree row	$0.059\pm0.002bB$		
0-10	Alley	$0.081\pm0.007aA$		
	Control	$0.076\pm0.003abA$		
•				
	Tree row	$0.069\pm0.004aB$		
10-30	Alley	$0.068\pm0.005aA$		
	Control	$0.064\pm0.002aA$		
	Tree row	$0.092\pm0.007aA$		
70-100	Alley	$0.095\pm0.027aA$		
	Control	$0.086\pm0.015 aA$		

Figure 2. Contribution of soil organic carbon (SOC) and soil inorganic carbon (SIC) derived CO2 to cumulated CO2 emissions. C: Control; A: Alley; R: Tree row.

Conclusion

Subsoil organic carbon seems to be as prone to decomposition as surface SIC organic carbon. contribution to CO₂ emissions needs to be considered for studies on SOC dynamics in calcareous soils.

decreased.

Figure 3. A) Contribution SIC-derived CO₂ as a function of SIC content. B) Cumulative SIC-derived CO₂ as a function of cumulative SOC-derived CO₂.

References

- Cardinael et al., 2015. Impact of agroforesty on stocks, forms and spatial distribution of soil organic carbon. Geoderma 259-260:288-299.
- Cardinael et al., 2017. Increased soil organic carbon stocks under agroforestry: A survey of six different sites in France. Agriculture, Ecosystems & Environment 236:243-255.
- Cardinael et al., 2018a. High organic inputs explain shallow and deep SOC storage in a long-term agroforestry system Combining experimental and modeling approaches. Biogeosciences 15:297-317.
- Cardinael et al., 2018b. Revisiting IPCC Tier 1 coefficients for soil organic and biomass carbon storage in agroforestry systems. Environmental Research Letters 13(124020):1-20.
- Chevallier et al., 2016. Temperature dependence of CO₂ emissions rates and isotopic signature from a calcareous soil. Journal of Arid Environments 135:132-139.