 Combes Didier ${ }^{2}$
stéphanie.mahieu@inra.fr

粼 Objective

The software Tree Analyser (TA) was developed to estimate total leaf area of isolated trees from digital photography (Phattaralerphong and Sinoquet, 2005). Estimations are based on gap fraction inversion. Our objective was to test this method to estimate total and browsed leaf area of three tree species grown in an agroforestry system for livestock feeding.

Materials and methods

\checkmark Two branches were collected on 4 trees per species in June and August.
\checkmark Pictures were implemented on branches and trees.
\checkmark Leaf area (LA) was measured using the image processing software ImageJ

Implementation and analysis of pictures on Tree Analyser

3 Species studied, 4 years old

Italian alder (Alnus cordata)

Common ash

White mulberry (Morus alba)

Traits that can be

 estimated:\checkmark Tree height
\checkmark Crown height
\checkmark Crown width
\checkmark Crown volume
\checkmark Leaf area density
\checkmark Leaf area

Results

I) Branch measurements

Species * A. cordata F. excelsior M. alba
Figure 1 Relationship between estimated LA and measured LA (A), leaf biomass (B), Leaf dry matter(C) and the number of leaves (D)
II) Tree measurements

Figure 2. Comparison of measurements and estimations using TA of tree height (A) and LA (B)
\square Branches: reliable estimates obtained between estimated LA and measured LA, leaf fresh biomass and DM and the number of leaves
\square Trees: reliable estimates of total height
LA was estimated with an error rate of 14,7\% for A. cordata and $26,7 \%$ for M. alba

Conclusion

\checkmark The method allows fast and non-destructive monitoring of leaf area of trees grown in an agroforestry system. Taking into account the potential to improve accuracy of measurements TA is a promising tool to study the browsing of fodder trees by ruminants.

References

Guide d'utilisation: Phattaralerphong and Sinoquet (2005)
Phattaralerphong et al., (2006) Tree Physiology 26, 1123-1136
Phattaralerphong and Sinoquet (2005) Tree Physiology 25, 1229-1242

