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GLOSSARY 
ABR = Acid-Brix Ratio, 

AC = Amylose Content 

AGD = Average Granule Diameter 

AIS = Alcohol Insoluble Solids 

ANN = Artificial Neural Network  

ANOVA = Analyse Of Variance  

AP = Amylose Percent 

BGP = Big Granule Percent  

CRY = Crystallinity 

DM = Dry Matter 

F-IR = Fourier 

HCN = Acid Cyanogenic 

HPV = Hot Paste Viscosity 

HSA = Hierarchical Clustering Analysis  

HSI = Hyperspectral Imaging  

ICC = Individual Carotenoids  

KNN = K-Nearest Neighbors 

LDA = Linear Discrimination Analysis 

LF-NMR = Low Field pulsed 1H Nuclear 
Magnetic Resonance  

LS-SVM = Least-Squares-Support Vector 
Machines 

MCDM = Multiple Criteria decision Making 

MLR = Multiple Linear Regression 

MPLS = modified partial least square 

NIRS = Near Infrared Spectroscopy 

OCPLS = One Class PLS 

PCA = Principal Component Analysis 

PHC = Phosphorus Content  

PKV = Peak Viscosity 

PLS = Partial Least Square  

PLSDA = PLS Discriminant Analysis 

PRC = Protein Content 

R2p = Coefficient of determination of 
prediction 

RBF-PLS = Radial Basis Function 

RMSEP: Root Mean Square of Error of 
Prediction 

RPD = Ration of Performance to Deviation 

SB = Setback  

SEC = Standard Error of Calibration  

SECV = Standard Error of Cross Validation  

SEP = Standard Error of Prediction 

SGP = Small Granule Percent  

SOL = Solubility  

TAA = Total Antioxidant Activity 

TBC = β-carotene 

TCC = Total Carotenoids 

TMA = Total Monomeric Anthocyanins  

TSC = Total Starch Content 

TSP = Total Soluble Phenolics  

TSS = Total Soluble Solids 

VC = Vitamin C  

VIS = Visible Spectroscopy 
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ABSTRACT 
The objective of RTBfoods project is to pinpoint the quality traits that determine the adoption of root, 
tuber and banana (RTB) varieties developed by breeders according to consumer and farmer 
preferences. 

The aim of work package 3 (WP3) of RTBfoods project is developing high throughput phenotyping 
protocols mainly Near Infrared Spectroscopy (NIRS) that could be applied in national and international 
breeding programs, postharvest processing and quality control procedures. This paper reviews 
research progress on high throughput methods (mainly NIRS) applied for RTB products 
characterization. This characterization may concern the quantification of different biochemical 
constituents, the measurement of physical properties and/or the sensorial profiling. 

This literature review is based on a selection of papers found through Scopus, Science Direct, Web of 
Science and Google Scholar. The formula research was NIRS OR HTTP OR non-destructive OR 
Spectroscopy OR Near Infrared Spectroscopy and Cassava (And Yam) (And Banana) (And Potato) 
(And Sweet Potato) (And Root) OR tuber. 

According to these requests, 148 references were found (Annex1), these papers were published in 
different scientific journals between 1988 and 2018. Until 2009, the number of published articles was 
quite low (1 to 4) and stable (Figure 1)Figure 1. The number of references increased after 2009 with a 
maximum of 24 publications in 2016. After 2016, the number of publication fell to 7 and only 5 articles 
were published in 2018 for the 5 crops.  

Figure 1: Number of references per year related to characterization of cassava, yam, banana, sweet 
potato and potato using high throughput techniques (mainly NIRS).  

More than the half of the articles (58%) concerns potato and potato products. Over this period of 30 
years, 24% of the scientific researches on high-throughput technics focused on banana and only 5, 6 
and 7% were related to yam, cassava and sweet potato, respectively. 

Key Words: state of knowledge, RTB, NIRS, spectrometry, high-throughput protocols 
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Figure 2: Percentage of publications related to cassava, yam, banana, sweet potato and potato 
(period: 1988 – 2018). 

1. METHODOLOGY AND CONSTITUENTS 
These publications report developments of rapid, reagentless, and non-invasive techniques: 
spectroscopic techniques, such as visible–infrared spectroscopy, Raman spectroscopy, nuclear 
magnetic resonance spectroscopy, X-ray imaging, ultrasonic systems and hyperspectral imaging, 
applied for the quality evaluation of RTB crops and products. In their review, “Non-Destructive and rapid 
evaluation of staple foods quality by using spectroscopic techniques: A review”, which include a large 
part of the present list of publications, (Su et al., 2017) highlighted the advantages of these technics for 
characterization of common quality attributes of staple foods. They also pointed out the challenges 
linked to their large diffusion for routine analysis. Such as VIS-IR spectroscopy which focuses only on 
a small portion of sample and does not provide information on spatial distributions of whole specimen. 
Or Raman spectroscopy which requires high-stability laser sources and sensitive amplification 
equipment and NMR spectroscopy which is expensive and takes more time to interpret the complex 
spectra. The spectral imaging, especially full spectral imaging and HSI, needs lots of energy to extract 
characteristic information from lengthy and detailed spectral data. There is an inevitable trend for 
multispectral imaging with only a few important bands instead of full wavelengths in the non-destructive 
and rapid evaluation of food quality. While the development of X-ray imaging is restricted (Rady and 
Guyer, 2015a) by the limitation of detection to density-changing tissues and not to chemical 
composition or mechanical damage forms. 

The authors recommended “the development of innovative calibration and prediction models with higher 
accuracy by eliminating data redundancy more conveniently for determining food quality in the future”. 
Furthermore, they recommended to evaluate the models by using the same quality attributes with 
different varieties of one specific staple food species. This will improve model robustness and extend 
application boundary. 

In that way the work done by (Lebot and Malapa, 2013) showed that NIRS can be used to produce a 
rapid prediction of total N, starch and sugar concentrations with a single calibration applied to five 
different root crop species (cassava, yam, sweet potatoes, taro and cocoyam) and across a wide range 
of varieties.  
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1.1 Spectroscopic Techniques 
Spectroscopic techniques are based on interactions between electromagnetic radiations and vibrational 
properties of chemical bounds. The visible (VIS) spectra covers the spectral range of 380 nm to 780 
nm which returns mainly information based on color due to pigments. NIRS refers to the 780-2500 nm 
part of the electromagnetic spectrum and is more useful for quantitative analysis of complex mixtures 
(Sun, 2009). NIR spectra of foods comprise broad bands arising from overlapping absorptions 
corresponding mainly to overtones and combinations of vibrational modes involving C-H, O-H and N-H 
chemical bonds, NIR range is usually divided into short-wave NIR (SW-NIR) spectral region (780–1100 
nm) and long-wave NIR (LW-NIR) spectral region (1100–2500 nm). The mid-infrared (MIR), 
approximately 2500-25000 nm (4000–400 cm−1) may be used to study the fundamental vibrations and 
associated rotational-vibrational structure. MIR is used to determine the chemical functional groups of 
a sample in both qualitative and quantitative ways (Sun, 2009). 

Spectral imaging is imaging that uses multiple bands across the electromagnetic spectrum. The spectral 
imaging technique is a combination of spectroscopy and imaging where some spectral information is 
located at every spot in a scene, which means that the spectral imaging technique can be used for the 
simultaneous acquisition of spatial images and spectral information (Sun, 2010). Spectral imaging can 
be divided into two main subcategories: Multispectral imaging which captures a small number of 
spectral bands, typically three to fifteen, through the use of varying filters and illuminations and 
Hyperspectral imaging (HSI) which combines spectroscopy and digital photography. A hyperspectral 
camera captures hundreds of wavelength bands, for each pixel, which can be interpreted as a complete 
spectrum. It is this notion of continuous spectrum, therefore of narrow and contiguous spectral bands, 
which is essential and makes it possible to make the best use of the information. Thereby, the spectral 
imaging can be applied for the quantitative prediction of the chemical and physical properties as well 
as their spatial distribution simultaneously (Sun, 2010). 

1.2 Constituents and physical properties 
The work that has been done in the selected articles on each product is summarized according to the 
analytical techniques used, the sample preparation procedure and the chemometric methods applied 
(Table 1).  

Regarding fresh or processes cassava and yam, most of the NIRS investigations reports quantification 
of chemicals constituents. These constituents are TCC, TBC, DM, hydrogen cyanide, starch, sugars, 
proteins, minerals and cellulose. Some of the papers concern adulteration such as adulteration of 
cassava flour. The main scanning mode is diffuse reflectance and the principal chemometric methods 
selected and applied are PLS and PCA. 

As for cassava and yam, NIRS was applied to banana pulp and banana skin mainly for quantification 
of chemical constituents: TCC, DM, sugars, cellulose and TSS. The majority of the applications for 
banana are based on VIS-NIR spectroscopy in diffuse reflectance or transmittance. Some physical 
criteria like firmness, chlorophyll and maturity on banana peel were investigated. Some studies refer to 
classification of banana according to their maturity stages. Hyperspectral imaging was used for 
predicting chemical constituents and physical characteristics in fresh and intact samples (TSS, firmness 
and moisture). 

As said before, a lot of researches using non-destructive techniques such as spectroscopic techniques 
concerns fresh and processed (chips and French fries) potato. A large part of the researches concerns 
chemical constituents (carbohydrate, protein, vitamins, minerals, carotenoids, moisture, starch and fat) 
for quality control or high throughput phenotyping. Another part concerns physical properties such as 
specific gravity, skin color and texture. Some researches focused on contaminant quantification such 
as acrylamide in processed products. Other studies concern different quality aspects and potential use:  
external or internal defects, greening, bruises, enzymatic browning, non-enzymatic browning and 
physiological disorders. A large part of those applications is based on VIS or VIS-NIR spectroscopy 
together with quantitative or qualitative approaches using linear methods PLS, PLSDA and PCA.  
  



7 
 

Product Technique Quality trait Process Multivariate 
analysis Reference 

Cassava 

NIRS TBC, DM Fresh Local PLS (Belalcazar et al., 2016) 

NIRS TCC, DM Fresh, Ground 
MPLS, 
Local 

regression 
(Davrieux et al., 2016) 

NIRS TCC, TBC, DM Fresh, Mashed, 
Intact 

MPLS, 
PCA, K-
means 

(Ikeogu et al., 2017) 

NIRS TCC, HCN Fresh, Ground MPLS, 
PCA, (Sánchez et al., 2014) 

UV-VIS TCC, TBC Fresh PCA, 
ANOVA (Moresco et al., 2015) 

UV-VIS Cyanide Processed Not 
specified (Phambu et al., 2007) 

NIRS Maleic acid Starch OCPLS, LS-
SVM (Fu et al., 2017) 

HSI-NIRS Adulterations Flour PLS, PCA (Su and Sun, 2017) 

Yam 

NIRS Quality Bean Not 
specified (Agaba et al., 2016) 

NIRS 
Starch, Amylose, 
Sugars, Proteins, 

Minerals, Cellulose 
Fresh PLS, PCA (Lebot and Malapa, 

2013) 

FT-IR Dioscin Freeze-dried, 
ground 

PLSDA, 
PCA, HCA (Kwon et al., 2015) 

FT-Raman Proteins Fresh Not 
specified (Liao et al., 2004) 

Banana 

NIRS Pesticide residue Ripe and Unripe PCA (Misal, 2013) 

FT-NIRS Brix, PH Fresh, five maturity 
stages PLS (Ali et al., 2018) 

VIS-NIRS TCC 
Fresh, Frozen, 
crush to fine 

powder 

PLS, Cross 
validation (Davey et al., 2009) 

NIRS Cellulose 
crystallinity Residues PLS (Rambo and Ferreira, 

2015) 

VIS-NIRS 
Chlorophyll, 

Glucose, Sucrose, 
Fructose 

Fresh PLS (Zude, 2003) 

VIS-NIRS TSS, DM, Starch, 
Sugar Fresh PLS (Subedi and Walsh, 

2011) 

NIRS Classification Rachis PCA (Tamburini and 
Larenas Uria, 2016) 

NIRS TSS, Firmness Fresh MLR (Liew and Lau, 2012) 

HSI-UV-
NIRS 

TSS, Firmness, 
Moisture Fresh PCA, PLS, 

MLR (Rajkumar et al., 2012) 

VIS Chlorophyll Fresh, Peel Regression 
model (Li et al., 1997) 

UV-VIS-
NIRS 

PH, Sweetness, 
TSS, ABR Fresh PLS, MLR (Jaiswal et al., 2012) 

Image-
processing Maturity Fresh ANOVA (Surya Prabha and 

Satheesh Kumar, 2015) 

VIS-NIR Chlorophyll, 
Elasticity, TSS Fresh ANN (Adebayo et al., 2016) 

HSI-VIS-
NIRS Color, Firmness Dried, Stored PLS, PCA, 

PLS-DA (Xie et al., 2018) 

Table 1: Summary of spectroscopic techniques for the quality evaluation of RTB 
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Product Technique Quality trait Process Multivariate 
analysis Reference 

Sweet 
potato 

NIRS 

AC, AP, TSC, PRC, 
PHC, SOL, SP, 
AGD,BGP,SGP, 

CRY,PKV,HKV,SB 

Starch PLS (Lu et al., 2006a) 

NIRS 
Starch, Sugars, 

Cellulose, Protein, 
Minerals 

Fresh, Peel, Cut PLS, PCA (Lebot et al., 2011) 

NIRS 
DM, TBC, PRC, 
Starch, Sucrose, 
Fe, Zn, Mg, Ca 

Peel, Cut, Freeze-
dried, Milled ANOVA (Tumwegamire et al., 

2011) 

NIRS Starch thermal Cut, Crushed, 
Sieved, Dried MPLS (Lu et al., 2006b) 

NIRS Starch, Moisture, 
Sugar Fresh, Sliced MLR (Katayama et al., 

1996) 

NIRS TBC, Starch, Fe, 
Zn 

Freeze-dried, 
Milled MPLS (zum Felde et al., 

2009) 

NIRS Proteins content 
Peeled, Cuted, 
Freeze-dried, 

Milled 
PLS (Magwaza et al., 2016) 

NIRS Moisture, Protein, 
Fiber, AIS, Starch 

Stored, Peeled, 
Cut, Freeze-dried, 

milled 
MLR (Diaz et al., 2014) 

NIRS Classification Powder 
RBS-PLS, 
PCA, SPA, 
KNN, LDA 

(Ding et al., 2015) 

NIRS, LF-
NMR, Sensory Texture Cut, Cooked, 

Sliced PLS, PCA (Thybo et al., 2000) 

Potato1 

NIRS Texture, DM, 
Starch 

Fresh, Stored 
Steam-Cooked PLS (van Dijk et al., 2002) 

NIRS TCC, ICC Fresh, Freeze-
dried and milled ANOVA, PCA (Bonierbale et al., 

2009) 

NIRS DM, Starch Fresh, Stored, Cut, 
and Crushed PLS (Haase, 2003) 

VIS-NIRS DM, Acrylamide, 
Fat Chips PLS (Pedreschi et al., 

2010) 

NIRS Texture, DM, 
Starch 

Stored, Steam-
Cooked PLS, PCA (van Dijk et al., 2002) 

NIRS Starch, Protein, 
Phosphorus 

Fresh, stored, Cut, 
Crushed, Starch MPLS (Haase, 2006) 

NIRS Fat, Moisture, Acid, 
Peroxide 

Crisps, crushed, 
Stored 

PLS, KPLS, 
LS-SVM, 

SPXY, MCDM 
(Ni et al., 2011) 

SWNIRS DM Fresh, Dried, 
Sliced PLS (Subedi and Walsh, 

2009) 

HSI-VIS-
NIRS 

Glucose, Sucrose, 
Primordial leaf 

count, TSS 
Fresh, Sliced PLS (Rady et al., 2014) 

MIR-NIRS Acrylamide Chips, Blended PLS (Ayvaz and Rodriguez-
Saona, 2015) 

NIRS Sprouting Capacity Fresh, Intact MPLS (Jeong et al., 2008) 

NIRS TSP, TMA, TC, VC Fresh, Intact PLS-DA, 
ANOVA (Tierno et al., 2016) 

NIRS DM Fresh, Intact PLS (Helgerud et al., 2015) 

VIS-NIRS Moisture Crisps PLS (Yee, 2001) 

MIR-NIRS Moisture, Fat Chips PLS 
(Shiroma and 

Rodriguez-Saona, 
2009) 

NIRS DM Slices, Intact Linear 
regression (Dull et al., 1989) 

NIRS 
DM, Specific 

gravity, Fructose, 
Glucose 

Fresh, Cut, Stored Not specified (Scanlon et al., 1999) 
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Product Technique Quality trait Process Multivariate 
analysis Reference 

Potato1 

NIRS 
DM, starch, 
Polarimeric, 

Protein, Sugars. 

Fresh, Peeled and 
Cut MPLS, PCA (Hartmann and 

Büning-Pfaue, 1998) 

NIRS Texture Stored, Steam-
cooked PLS, PCA (Boeriu et al., 1998) 

NIRS DM, Starch, Protein Pulped PLS (Brunt and Drost, 
2010) 

NIRS Specific gravity Intact PLS (Chen et al., 2005) 

HSI-NIRS Blackspot Intact PCA,PLSDA (López-Maestresalas 
et al., 2016) 

NIRS Sucrose and 
glucose 

Fresh, Stored, 
Sliced 

IPLS, GA, 
PLSR, LDA, 
KNN, ANN, 

PLSDA 

(Rady and Guyer, 
2015a) 

NIRS Acrylamide Crisps PLS (Segtnan et al., 2006) 
NIRS Nitrogen Dried, Ground PCA (Young et al., 1997) 
NIRS Protein Cut, Freeze-dried PLS, PCA (López et al., 2013a) 

1Only the most cited publications are listed in this table.  

2. RESULTS AND APPLICATIONS 
In this part we discuss the main results found in the literature about application of non-destructive 
methods for high throughput phenotyping of RTB and RTB products. 

2.1 Cassava   
Phambu et al., investigated in 2007 different techniques (fluorescence, infrared spectroscopy, 
scanning electron microscopy, UV-visible spectroscopy, and X-ray diffraction) to monitor the effect of 
processing mode on the residual cyanogens in cassava roots. The infrared spectra of the samples were 
obtained using a Spectrum_One spectrometer from Perkin-Elmer. For transmission spectra, samples 
were prepared as KBr discs with 10% w/w of each sample. For ATR-IR spectra, an ATR DuraVision 
accessory was used to record the spectra of pure samples, without any preparation. The authors 
demonstrated that the processing modes (boiling, soaking, and sun-drying) do not significantly affect 
the initial chemical composition of cassava. The infrared technique (4000-600 cm-1) was able to detect 
residual cyanide at relatively very low concentrations. Other researches concern biochemical 
components quantification (TCC, TBC and DM), Ikeogu et al., 2017, developed models for DM, TBC, 
TCC quantification, with an accuracy expressed as SECV = 0,9, 1,6 and 2,1% respectively. These 
models based on PLS regression were developed on crushed fresh cassava by using a portable VIS-
NIR spectrometer (QualitySpec Trek: S-10016, ASD, Longmont, USA) and were more accurate than 
those based on spectra of intact fresh cassava samples. This study was complementary of the works 
conducted by Sánchez et al., 2014 ; Belalcazar et al., 2016 ; Davrieux et al., 2016 and Moresco et 
al., 2015. These different papers are related to quantification of TCC and TBC in fresh cassava 
samples. The accuracy of the models developed by Davrieux et al., 2016 enables the use of NIRS for 
high throughput phenotyping of cassava genotypes for high TB and TC contents. The models are based 
on a large database (6026 samples) together with a Local PLS regression approach, doing this way the 
SEP values were 1,38% and 1,03% respectively for TBC and TCC. For the first time, Fu et al., 2017 
quantified maleic acid content (RMSEP=0.026%) in order to detect unexpected frauds in cassava 
starch. They used OCPLS model and Nicolet 6770 FTIR spectrometer FTIR with a spectral range of 
1000-2500 nm. 

2.2 Yam  
Very few studies have been done on yam characterization using non-destructives analysis. The studies 
done are related to the quantification of biochemical constituents. The feasibility of starch and sugars 
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quantification by NIRS has been studied by Lebot and Malapa in 2013. For this study, they developed 
PLS regression models based on 1096 samples from five different species: cassava, cocoyam, sweet 
potato, taro and yams. The spectra (1000-2500 nm) were collected using an ASD LabSpecPro (ASD, 
Longmont, USA) spectrometer on dried ground samples. The authors demonstrate that NIRS can be 
used to produce a rapid prediction of total N, starch and sugar concentrations with a single calibration 
applied to five different root crop species and across a wide range of varieties. In 2015, Kwon et al. 
have studied whether or not FT-IR spectroscopy could be used for taxonomic and metabolic 
discrimination of African yam lines. The work was conducted on whole-cell extracts using a FT-IR 
spectrometer (Bruker Optics GmbH, Ettlingen, Germany). Each spectrum was recorded from 4000 to 
400 cm-1. They demonstrated that a hierarchical dendrogram based on partial least square-discriminant 
analysis (PLS-DA) of FT-IR data from 7 African yam species shows phylogenetic relationship. In 
addition, the content of dioscin was predicted using a PLS regression model with regression coefficient 
R2 = 0,72. The authors consider based on their results that FT-IR combined with multivariate analysis 
could be applied as a novel tool for metabolic evaluation and high-throughput screening of African yam 
lines with higher content of dioscin.  

2.3 Banana 
The applications of rapid non-destructive techniques on banana are numerous and varied in their 
purpose and in terms of the techniques used. They can be classified into two types: quality evaluation 
through the quantification of main constituents and evaluation of physical properties linked to maturity 
and sensorial quality. The techniques applied refer to spectroscopy technics (VIS and NIR), Imaging, 
HSI, Electric Impedance Measurement (or dielectric properties), electronic noise and 1H-NMR. 

The main constituents, linked to quality, studied are carotenoids (TCC and TBC), total soluble solids 
(TSS), Dry matter (DM), acid–Brix ratio, chlorophyll and starch. Some physical properties were also 
investigated such as firmness and elasticity. 

Carotenoids quantification was investigated by Davey et al., 2009 on powdered, lyophilized Musa fruit 
pulp samples using a Labspec Pro Vis-NIR spectrophotometer (Analytical Spectral Devices Inc., 
Boulder, CO). They conclude that VIS-NIRS could be used for high throughout phenotyping based of 
their TCC and TBC contents using PLS regression models obtained. Models were developed on a 
limited number of samples (47) the SEP estimated on an independent set were 28,70 nmol/gdw for 
TCC and 17,07 nmol/gdw for TBC. In 2011, Pereira et al. have established a pre-screening of banana 
according to Provitamin A content determination using pulp color characterization by colorimetry. 
Potential of spectroscopy in the wavelength range of 299-1100 nm for nondestructive prediction of DM, 
pH, TSS and acid–Brix ratio (ABR) for banana was studied (Jaiswal et al., 2012). The purpose was to 
have proper estimation of fruits maturity and ripening stage. They developed a PLS regression models 
to predict DM, ABR, TSS and pH, with R2

p=0,87, R2
p=0,78, R2

p=0,81 and R2
p=0,83, respectively. The 

spectra of 95 intact bananas were obtained by transmittance in wavelength range of 299 nm -1100 nm 
using a portable NIR spectrometer (model AvaSpec-2048, 0.04–20 nm resolution Avantes, USA) 
connected to 30 W halogen lamp and sample holder. Prediction of total soluble solids and pH in banana 
was also investigated by Ali et al., 2018. Thirty banana samples were measured at five different 
maturity stages. Each banana sample was scanned at three different locations (top, middle and bottom) 
using a Spectrum 100N FT-NIR spectrometer (Model: PerkinElmer, USA) to acquire absorbance 
spectra in the range of wavelength from 1000 to 2500 nm. The prediction model, based on PLS 
regression, for the Brix values obtained a coefficient of determination (R2

p) of 0,81 and root means 
square error of predictions (RMSEP) of 3,91 Brix. The prediction model for pH values had an R2 of 0,69 
and RMSEP of 0,36 pH. 

Physical properties such as Firmness and elasticity was studied using hyperspectral imaging for 
determining banana color (L, a* and b*) and firmness by Rajkumar et al., 2012. The visible/near 
infrared hyperspectral imaging system, covering the wavelengths of 380-1023 nm, was used to capture 
hyperspectral images of intact fruits at different ripening stages. Partial least squares (PLS) together 
with two-wavelength combination method was used to predict the color (L∗, a∗ and b∗) and firmness 
values. Firmness was taken using the texture analyzer (TA-XT2i, Stable Microsystems Texture 
Technologies Inc., UK) fitted with a 5 mm diameter flat probe. The overall results proved that spectral 
reflectance information extracted form hyperspectral images can be applied in determining color and 
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firmness values. The corresponding RPD were 2,23, 6,10, 2,12 and 2,06 for L, a, b and firmness 
respectively. This study was also carried out to classify successfully unripe and ripe bananas using the 
spectral reflectance information. Sanaeifar et al., 2014, studied different banana quality indices (TSS, 
TA, pH and firmness) from color features using support vector regression (SVM) and artificial neural 
networks (ANN). For this study a machine vision system was designed that includes two main parts: an 
image acquisition system to take images from banana samples at any stage of shelf-life and an image 
analysis algorithm written in MATLAB V8.1 (The Mathworks, Natick, MA,USA). To measure the pulp 
firmness of samples, an Instron universal testing machine Model SANTAMST-5, with an 8mm cylindrical 
probe, was used. The respective RMSE were 6,17 for firmness, 1,36 for TSS, 0,21 for pH and 0,48 for 
TA. The capability of ANN and SVR models was also applied successfully for classifying the banana 
fruit according to their degree of shelf-life. Considering the same purpose, Liew and Lau, 2012 
demonstrated that NIR spectra in the wavelength region of 680-2500 nm, can be applied to develop 
calibration models for prediction of firmness and soluble solid content of Cavendish banana at different 
ripeness indices. The models using multiple linear regression enable predictions with RMSEP ranged 
from 0,01 to 0,26 kgf for firmness and 0,039 to 0,788 Brix for SSC. Banana pulp firmness measurements 
were conducted with a penetrometer mounted on a test stand using a 7 mm diameter cylindrical probe 
(Wagner, USA). Spectra were collected over the wavelength range of 680-2500 nm using a NIR 
reflectance spectrometer (Unity Scientific, NSW). The NIR spectra were taken from the middle part of 
the fruit at equal distant from proximal and distal ends by averaging 15 scans.  

Prediction of quality attributes (SSC, chlorophyll and elasticity) and ripeness classification of bananas 
using optical properties was also investigated by Adebayo et al., 2016. The intact bananas were 
measured non-destructively using the multi-spectral system (DA-Meter, Turoni srl, Italy) to capture the 
backscattered images of the samples. The elasticity test was performed on the banana fingers using a 
universal testing machine (TA·XT Plus Texture Analyser, StableMicro Systems, Godalming Surrey UK) 
with a 12 mm diameter spherical probe and pressure force of 2 N. The authors applied ANN to develop 
predictive models and classification model, the visible wave-length region of 532, 660 and 785 nm gave 
the highest correlation coefficients (r): for chlorophyll the r coefficient range between 0,977-0,981 and 
between 0,955-0,976 for elasticity. While the near infrared region of 830 and 1060 nm gave r coefficients 
between 0,964 and 0,980 for prediction of SSC. The classification of banana into ripening stages was 
assessed by using the visible wavelength region with a classification accuracy of 97,53%.  

Zude, 2003 studied internal and external characterization of fresh banana using VIS-NIRS (350-1700 
nm). The PLS regression was applied on spectra acquired by OMEGA 20 spectrometer in order to 
predict chlorophyll content in banana skin and fructose and sucrose contents in banana pulp. The R2

p 
obtained were 0,96, 0,94 and 0,96 respectively. Others studies concern various aspect such as chilling 
injury appearance using backscattering imaging (Hashim, 2012); detection of pesticides residues in 
banana skin using NIRS (Misal, 2013) ; the browning degree using Image analysis (Cho et al., 2016) 
and ripening stages (Chowdhury et al., 2017; Gomes et al., 2013; Juncai et al.; Raffo, 2005; Soltani 
et al., 2011; Surya Prabha and Satheesh Kumar, 2015) using respectively electrical impedance, 
colorimetry, classification, 1H-NMR, dielectric properties and image processing. 

2.4 Sweet potato  
There are few publications on non-destructive characterization of sweet potato and sweet potato 
products compare to potato. The publications refer to composition determination and physical 
properties of the raw product or processed products. One of the first publication was published by 
Katayama et al., 1996, and report quantification of starch, moisture, and sugar in sweet potato by near 
infrared transmittance. The spectra were acquired on slices (5 mm Thick) of dried roots, and a NIR 
spectrophotometer (model 6250; Pacific Scientific, Silver Spring, Md.) was used to measure the 
transmittance spectra of the slices from 680 to 1235 nm. A slice was put on a sample holder provided 
with a glass disk 2 cm in diameter. Monochromatic light was used to illuminate the bottom of the slice 
on the holder, then the amount of radiation transmitted through the slice was measured by a detector 
located just above the slice. Calibration equations were derived by multiple regression analysis, the 
best calibration for starch, moisture and sugar were obtained from combination of different harvests 
samples (1989 to 1991) with SEP= 1,91 and 2,00, 1,21 % respectively. Lebot et al., 2011; evaluated 
the potential of NIRS (1200-2400 nm) and VIS-NIRS (400-2500 nm) to predict major constituents of 
fresh and processed sweet potato. To do that, 240 samples of ground dried chips were analyzed in 
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reflectance mode to develop PLS models of starch, sugars, cellulose, proteins, minerals, moisture, AIS 
and fiber, the SEP (%) were 3,13, 2,31, 1,26, 0,87 and 0,56 respectively. In 2016 Magwaza et al., 
related the development of NIRS models for rapid quantification of protein content in sweet potato. To 
do this, they sampled a pool of 104 sweet potato varieties and scanned the freeze dried and ground 
roots using NIR spectrometer (Model XDS, Foss Inc., Silver Spring, MD, USA). The calibration model 
using PLS regression is accurate with R² = 0,98 and RMSEP = 0,29%. Total and individual carotenoid 
profiles in Solanum phureja cultivated potatoes using NIRS was studied by Bonierbale et al., 2009. 
The cross, external and independent validation of the calibrations indicate that total carotenoids and 
zeaxanthin concentrations can be estimated by NIRS with high accuracy and that NIRS can be used to 
differentiate accessions with low, medium and high concentrations of violaxanthin, antheraxanthin, 
lutein or β-carotene. Zum Felde et al., report a study done on freeze dried and milled sweet potato 
samples scanned by NIRS within the range of 400 to 2500 nm using a NIRS monochromator (model 
FOSS 6500; NIRSystems Inc., Silver Spring, MD, USA) for protein, β-carotene, iron, zinc, starch and 
individual sugars quantification. NIRS calibration equations developed on the basis of 216-422 selected 
samples showed high coefficients of determination for the calibrations (R²c) (0,81 to 0,98) with slightly 
lower coefficients of determination for cross validations (R²cv) (0,80 to 0,97). The highest R²c and R²cv 
were found for β-carotene (0,98 and 0,97, respectively), starch (0,97 and 0,96, respectively), and for 
protein (0,97 and 0,95). The iron and zinc calibrations for freeze dried and milled sweet potato material 
have medium precision compared to those for protein, β-carotene, starch and individual sugars. The 
calibrations are used for screening for high β-carotene, iron and zinc in sweet potato germplasm in a 
global NIRS network. 

The thermal properties and quality of sweet potato starches were studied by Lu et al., 2006b. They 
developed MPLS models established on 93 genotypes samples analyzed in diffuse reflectance on a 
FOSS NIR 5000 Systems spectrometer (1100-2500 nm). The performances of models obtained for 
gelatinization onset temperature, gelatinization peak temperature (Tp), gelatinization temperature 
range (Tr) and cooling resistance (CR) were (SEP=2,014 °C, R2

p =0,85), (SEP=1,371 °C, R2
p=0,89), 

(SEP=2,234 °C, R2
p =0,86) and (SEP=0,528, R2

p =0,89). Other predictive models using NIRS were also 
developed by Lu et al., 2006a in order to measure the physicochemical quality and pasting properties 
of sweet potato starch. The PLS model were developed with 93 samples from different varieties, results 
indicate that NIRS is reasonably accurate for predicting amylose content (AC), amyloid percent (AP), 
total starch content (TSC), protein content (PRC), phosphorus content (PHC), solubility (SOL), swelling 
power (SP), average granule diameter (AGD), large granule percent (BGP), small granule percent 
(SGP), crystallinity (CRY), peak viscosity (PKV), viscosity hot paste (HPV), setback (SB), and pasting 
temperature (Ptemp) with high R2

p range between 0,85 and 0,92. 

2.5 Potato 
As presented in introduction, 58% of the publications found are related to potato and potato products 
characterization. Among these publications two excellent review articles are particularly informative and 
comment for a large part the publications listed in this report. The first one “A Review of the application 
of Near-Infrared Spectroscopy for the analysis of Potatoes”, written in 2013 (López et al., 2013b) 
reports a detailed and critical overview of the main applications of NIR for potatoes and potatoes product 
characterization. The second one, “Rapid and/or nondestructive quality evaluation methods for 
potatoes: A review”, written in 2015 by Rady and Guyer, includes spectroscopic methods but extends 
the review to other rapid and/or non-destructive methods. 

We agreed with the fact, that some chemical constituents and physical properties in potato tubers 
determine their quality and use for either the processed industry or as fresh, or prevent the use of tubers 
if the levels of these parameters are beyond the suggested thresholds (Rady and Guyer, 2015b). 
Furthermore, the preparation method employed affects potato composition (reduce fiber and protein 
content, increase of fat content, oxidation…). So we can distinguish applications that focus: 

- On constituents quantification in relation with intrinsic quality linked to genotype and/or growing 
conditions  

- On constituents quantification linked to the process. 
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These constituents are, but not limited to, dry matter, carbohydrate, protein, vitamins, glycoalkaloids, 
minerals, carotenoids, fat and anthocyanins. Additional physical parameters refer to quality such as: 
specific gravity, flesh and skin color, texture. Finally, other aspects which determine quality and potential 
use are the external or internal defects such as greening, bruises, enzymatic browning, non-enzymatic 
browning, and other physiological disorders. 

2.5.1 Raw tubers 

The applications of NIR for raw tubers cover different sample presentation: whole tubers, sliced 
samples, mashed and freeze-dried or any other non-cooked forms. The spectral range regions studied 
include: VIS, NIRS, VIS-NIRS, MIR. 

One of the first publication was published by Dull et al., 1989, and report the quantification of DM in 
potato by near infrared transmittance. Spectral measurements from 800 nm to 1000 nm on slices and 
intact tubers were made using two single beam NIR spectrophotometers: a biological spectrometer (the 
Biospect) and the LT 7000 (LT Industries,Rockville, MD, USA). Potato samples were analysed as thin 
and thick slices and intact tubers by direct transmittance. The standard errors of prediction were SEP 
= 1,69% for thick slices samples and SEP = 1,52% for intact tuber. It was shown by Fraser et al., 2000 
and Lammertyn et al., 2000, that NIR radiation intensity inside fruit tissue decreases in an exponential 
trend with depth. Obviously, this links to lower performance for whole tubers than slices for estimating 
chemical constituents. Moreover, skin is a factor resulting in dispersing, interfering, and weakening of 
detected signals, and mostly yields lower correlation between spectra and chemical compounds inside 
the tissue (Rady and Guyer, 2015b). The works done by Brunt and Drost, 2010; Haase, 2003, 2011; 
Hartmann and Büning-Pfaue, 1998 on homogenized, mashed, and ground samples, using 
respectively, NIR or VIS/NIR reflectance (1100-2500 nm, 300–2500 nm, and 850–2500 nm) have led 
to contrasting prediction performances for DM (RMSEP = 0,50%, 0,19%, 0,56% and 0.42%). Helgerud 
et al., 2012, have developed an on-line measurements of DM content for whole potatoes. Whole potato 
tubers were illuminated with two 50W halogen bulbs (Osram, Augsburg, Germany) and backscattered 
light was collected through a collection tube. The instrument was equipped with a detector recording 30 
equally spaced channels from 449 to 1040 nm, thus recording both visible and near infrared light. For 
the on-line NIR measurements the potatoes were moving along a conveyor belt below the collection 
tube. The performance of the PLS model were R2 = 0,92 and RMSECV = 1,06%. The quantification of 
dry matter content of potato tubers was also assessed by Subedi and Walsh, 2009 using short-
wavelength near-infrared spectroscopy (750–950 nm) in a partial transmittance optical geometry. The 
sampling optics did not involve contact with the sample and could be used on a moving stream of 
product. The authors developed models based on spectra of whole (dirty and clean) tubers, peeled 
tubers and sliced tubers. The respective RMSECV were 0,86%, 0,87%, 0,70% and 0,72%. A model 
which combine the four types of samples led to a RMSCV of 0,98%. The model developed for moving 
sliced tubers had an RMSEP of 0,42%. The result is encouraging and suggests the technology could 
be used for in-line assessment of average moisture concentration of sliced tubers, with the assessed 
moisture level used in process control operations. 

The quantification of proteins content of potatoes using NIRS was studied by Hartmann and Büning-
Pfaue, 1998; Haase, 2006; López et al., 2013a, Bernhard and al., 2016. Best results were obtained 
by Hartmann and Büning-Pfaue, 1998 on peeled ground homogenised potato samples. The PLS 
model developed on the basis of reflectance NIR spectra (1100-2500 nm) led to an SEP equal to 0,06% 
FW for crude protein. Brunt and Drost, 2010 developed a PLS model for the quantification of 
coagulating proteins with a SEP= 0.06%. The NIR spectra (1100-2500 nm) of potato pulp were 
measured by applying an optical fiber NIR probe (EDAPT-1) connected to the NIR spectrophotometer 
(Technicon Infralyzer IA 500). This result for coagulating proteins is in accordance with results obtained 
by Haase, 2006; on unpeeled ground homogenised potato samples. Bernhard et al., (2016) studied 
the quantification of crude protein content (CP) and dry matter content (DM) of potato tuber samples (n 
= 117) using two different NIRS devices. Samples were analysed as fresh (grated and mashed) using 
a mobile NIRS system (Zeiss CORONA Plus NIR 1.7 inclusive Zeiss Turn step, Carl Zeiss Microscopy 
GmbH, Jena, Germany) and dried (flour) using a NIRSystem 6500 (FOSS NIRSystems Inc., Silver 
Spring, Maryland). Calibrations were developed using MPLS regression, for fresh grated samples the 
SECV were 1,20% for DM and 0,83% for CP, the SECV for fresh mashed samples were 1,14% for DM 
and 0,80% for CP and the SECV for dried ground samples was 0,36% for CP. The newly developed 
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NIRS calibration for CPC on fresh potato samples is useful for the selection of potato cultivars with 
comparatively high or low tuber protein content. In 2006, Fernández-Ahumada et al. have developed 
a discriminant model by using PLS2 regression which correctly classified 87.5% of mashed potato 
samples in groups of low (< 14 mg g−1) and high (≥ 14 mg g−1) protein content. Young et al., 1997, 
have developed a NIR calibration for quantification of nitrogen (N) in potato leaves, stems and tubers. 
Samples were grown in the field under specific nitrogen treatments in order to have a wild range in N. 
Dried ground samples were scanned in duplicate by NIR using a Bran+Luebbe InfraAlyser 260 fitted 
with nine fixed-wavelength filters selected for analysis of nitrogen, protein, starch, water and oil. The 
PCR was used to develop the calibration models, the SEP were 0,112%, 0,036% and 0,092 % for 
leaves, stems and tubers respectively.  

Sugars are presented in narrow concentration in potatoes. NIRS analysis of sugars content was studied 
by (Hartmann and Büning-Pfaue, 1998; Rady and Guyer, 2015; Scanlon et al., 1999). In 1998, 
Hartmann and Büning-Pfaue have used NIRS to predict individual sugars components such as 
glucose, fructose, and sucrose along with the estimation of total reduced sugars content of 20 peeled, 
ground and homogenized potatoes samples. To do this, spectral data were collected by measurement 
of diffuse reflectance from the sample in the NIR region within 1100-2500 nm using a NIRSystems 5000 
(Perstorp Analytical Co.) and PLS regression was applied to calculate the relationships between spectra 
and sugar contents. The SEP for individual sugars were 0,04% for Glucose, 0,028% for fructose and 
0,037% for sucrose while the SEP for TRS was 0,06%. The performance of near infrared method was 
also examined by Chen et al., 2009 for moisture, carbohydrate, protein and amylase contents 
determination as well for pasting viscosity properties. The intact potato tubers (n = 150 for calibration 
and n = 100 for validation) were analysed by NIRS (400-1100 nm) in interactance mode. The standard 
error of prediction was 0,87% for moisture, 0,95% for carbohydrate, 0,6%. for amylose and 0,15% for 
protein. SEP was equal to 30 RVU (the default Rapid Viscosity Unit) for peak viscosity, 34 RVU for final 
viscosity, 24 RVU for breakdown, and 22 RVU for setback.  

Whole tubers and 12.54 mm slices of Frito Lay 1879 (chipping) and Russet Norkotah (table) potato 
cultivars were evaluated (Rady et al., 2014) using NIR transmittance spectroscopy, visible/NIR 
interactance spectroscopy, and visible/NIR hyperspectral imaging modes. Those spectroscopic 
techniques were used to estimate glucose, sucrose, specific gravity, primordial leaf count, and soluble 
solids. Both the whole tuber and the sliced samples were used in the case of visible/NIR interactance 
and visible/NIR hyperspectral scattering modes, however, just the sliced samples were used in case of 
the NIR transmittance mode. The system used for VIS/NIR interactance mode experiments contained 
an Ocean Optics fiber spectrometer (model No. USB 4000, Ocean Optics, Inc., Dunedin, FL, USA) with 
a 200 µm diameter fiber optic. The InGaAs spectrometer (model No. NIR512L-1.7T1, Control 
Development, Inc., South Bend, IN, USA) with an optical resolution of 0.4 nm FWHM was used in the 
transmittance mode with a field of view (FOV) of 10.44°. The calculation of the relative transmittance 
was done over the NIR wavelength range between 900 and 1685 nm. The hyperspectral system (model 
No. C4880, Hamamatsu Photonics, Hamamatsu, Japan) was used to capture diffuse scattered light 
from both the whole and sliced samples in the range of 400–1000 nm. The VIS/NIR interactance system 
in the range of 446– 1125 nm was shown to yield the best correlation for glucose, sucrose, specific 
gravity, soluble solids, and primordium leaf counts in the case of sliced samples for Frito Lay 1879. The 
same trend was achieved for whole tubers except for specific gravity and soluble solids content which 
showed weaker correlation than other constituents. For sliced samples, VIS/NIR hyperspectral and NIR 
transmittance systems resulted in relatively consistent correlation performance for glucose, sucrose, 
and primordium leaf counts. However, the performance was weaker than that obtained using VIS/NIR 
interactance. In general, this study demonstrated a potential for using VIS/ NIR spectral interactance 
toward the development of dedicated instrumentation for rapid in-field measurements, storage 
monitoring, or for online sorting purposes of potato tubers. 

The relatively high content of starch in potatoes and the broad distribution inside the tuber (in cortex, 
vascular ring, and parenchyma) resulted in strong correlation with NIR or VIS/NIR spectroscopic 
system. As underlined by (Rady and Guyer, 2015b), monitoring starch content in potatoes using 
spectroscopic systems was feasible with most of tests conducted on mashed or ground tubers, and 
resulting in relatively low RMSEP values: 0,651% by Haase (2004) and 0,740% by Haase (2011), 
compared to limits recommended for tuber processing. Hartmann and Büning-Pfaue, 1998, have 
developed a model for starch quantification with a SEP=0,28%, using peeled ground homogenised 
samples. 
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Wen-Hao Su and Da-Wen Sun (2O17) investigated the potential of chemical imaging for rapid 
measurement of dry matter concentration (DMC) and starch concentration (SC) in both potato and 
sweet potato tubers. The raw hyperspectral images including 256 bands were captured in the spectral 
range of 897–1753 nm with the interval of 3.34 nm between contiguous bands. The spectral data of 
regions of interest (ROI) can be extracted from the whole areas of the tested sample in hyperspectral 
images using masking and morphological techniques such as image subtraction, erosion or dilation. 
The mean spectral values of all pixels in the ROI were calculated by averaging all spectral values of 
each wavelength in 964–1655 nm. Hyperspectral chemical imaging was demonstrated to be great 
potential for rapidly quantifying time series DMC and SC of tuber samples. This research was carried 
out to evaluate the potential of hyperspectral imaging system (900–1700 nm) for rapid authentication 
of organic tubers and grading of tuber moisture levels in both spectral and spatial domains. The MC-
PLSDA model, using optimum wavelengths, for identification of organic tuber samples from the other 
tuber varieties, provided an overall accuracy of 100%. Another simplified PLSDA model was applied for 
grading tuber moisture levels, resulting in a correct classification of 91.6%. 

Ainara López et al., (2014) investigated the quantification of total phenolic content (TPHEN) of 98 
different potato varieties by NIRS. Spectral data were collected through a portable NIR 
spectrophotometer. Each tuber was scanned at four different points along the equatorial area using a 
Luminar 5030 "Hand held" AOTF-NIR (Acousto-Optic Tunable Filter-Near Infrared) Analyzer (Brimrose) 
in the reflectance mode. This device covers a spectral range of 1100-2300 nm. Partial least squares 
regression was applied to the spectral data to develop a calibration model, the RMSE of calibration 
(RMSEC) and cross validation (RMSECV) were 1,47 mg GAE/g DW and 2,01 mg GAE/g DW, 
respectively, and the RMSE of prediction (RMSEP) was 3,50 mg GAE/g DW. In 2015, Tierno et al. 
have developed classification models for purple and red fleshed potato based on phytochemicals and 
NIR spectra. NIRS measurements were made for whole intact tubers (unpeeled and free of soil) using 
a Luminar 5030 Miniature ‘Hand held’ AOTF-NIR Analyzer (Brimrose, Baltimore, MD, USA). Samples 
were scanned at four different points along the equatorial area and the average spectrum was used for 
the analysis. Each spectrum was an average of 50 scans. Three PLS-DA models were performed to 
classify the varieties into three groups according to their phytochemical concentration levels and called: 
low content (LC), mid content (MC) and high content (HC). The first PLS-DA model corresponded to 
varieties grouped according to their content of total soluble phenolics (TSP), total monomeric 
anthocyanins (TMA) and hydrophilic antioxidant capacity (HAC). The second PLS-DA performed 
comprised groups categorized by their total carotenoids (TC) content. Finally, a third PLS-DA was 
accomplished covering varieties grouped by means of vitamin C (VC) level. The best classification was 
obtained using TSP, TMA and HAC based groups; with a correct classification of 97,6% for LC, 83,8% 
for MC and 76,9% for HC. Classification based on TC groups only led good results for HC (classification 
rate = 80,4%). No acceptable classification was reached for VC groups. López-Maestresalas et al., 
2017 studied the potential of NIRS for quantification of reducing sugars (RS), nitrogen (N), total soluble 
phenolic (TSP) and hydrophilic antioxidant capacity (HAC). Tubers were lyophilized prior to spectral 
acquisition (n = 363 tubers) using a Miniature ‘Hand held’ AOTF-NIR spectrometer (Luminar 5030, 
Brimrose, Baltimore, MD, USA). Good PLS regression models were obtained for the prediction of 
nitrogen and TSP with R2 above 0,83. PLS models obtained for the estimation of HAC could be used 
for screening. No good model for RS was obtained, probably due to the low concentration of those 
compounds in potato tubers. The results obtained in this study are similar to those obtained by 
Mehrubeoglu and Cote (1997) and Haase (2011). 

Recently, Escuredo et al., 2018, investigated the potential of NIRS for quantification of phenols, 
flavonoids, antioxidant activity (IC50), dry matter, total soluble solid content, and apex texture in 
potatoes flesh. In this study, 73 potato samples corresponding to 35 potato varieties were used. The 
lyophilized potato flesh was scanned in reflectance mode using a NIR system 5000 (Foss, Hillerød, 
Denmark) with a standard 1.5m 210/210 bundle fiber-optic probe. The apex and flesh textures of each 
potato were determined using a penetrometer (BERTUZZI-FT 327) fitted with an 8mm plunger tip and 
were expressed in units of kg cm−2. The modified PLS was used to develop calibrations, the SEP and 
(R²) were: phenols 0,21 mg.g-1(0,82) ; Flavonoids 9,57 µg.g-1(0,82), IC50 2,69 mg.ml-1(0,84) ; Dry 
matter1,32%(0,89); TSS 0,29°Brix(0,90); Apex texture 0,44 kg cm−2(0,84) and flesh texture 0,48 kg 
cm−2(0,48). 

Some physical and others quality traits in potatoes were investigated. In 2005 Chen et al. concluded 
that NIRS was able to accurately measure the specific gravity of intact potatoes. To do this, a total of 



16 
 

250 potatoes of three cultivars, Irish-Cobbler, May-Queen and Kita-akari, were analysed by NIRS (700-
1100 nm) in interactance mode. PLS regression was used to develop a predictive model for specific 
gravity. An accurate PLS model was obtained with R2

p= 0,94 and SEP= 0,0047 g/cm3. Helgerud et al., 
2012 compared the performance of two different NIR instruments to the performance of the traditional 
specific gravity measurement method. They used a 1D NIR interactance for stationary analysis and a 
commercially available 2D NIR interactance system to provide online estimation. Using the 1D NIR 
interactance the performance were: R2=0,95 and RMSECV=0,91g/cm3 for SG.  

Damage to potato tubers either by mechanical harvesting or by transport causes a great loss of quality 
of the final product, and as a result almost two-thirds of the potatoes sold in the market show external 
or internal damages (López et al., 2013b). Therefore, several investigations were conducted in order 
to reduce the degree of damages. In 1999, Evans and Muir investigated the feasibility of NIR 
spectroscopy as a method for determining the discoloration of potatoes associated with bruising. NIR 
reflectance spectra (700-1700 nm) were collected for both unpeeled and peeled tubers as in bruised 
and unbruised sites. Linear classification was used to discriminate samples, 75 to 95 % were correctly 
classified as bruised. Recently, López-Maestresalas et al., 2016 investigated the detection of bruises 
in potato by hyperspectral imaging (HSI). Two HSI setups were used, Visible-Near Infrared (Vis-NIR) 
ranging from 400 to 1000 nm (CCD camera, TXG14, Baumer, Germany), and Short Wave Infrared 
(SWIR) covering the 1000-2500 nm HS SWIR XSM320C4-60 (Headwall Photonics Inc., Fitchburg, MA). 
For this study, 188 samples were divided into two groups. Bruises were manually induced and samples 
were analysed 1, 5, 9 and 24 h after bruising. The PLS-DA model allowed an overall correct 
classification rate above 94% for both hyperspectral setups. Furthermore, more accurate results were 
obtained with the SWIR setup at the tuber level (98.56 %), allowing the identification of early bruises 
within 5 h after bruising. Alander et al., 2013, investigated potatoes internal hollow heart detection. To 
do this, the spectral measurements of both potatoes and peeled potatoes were done with a 
spectrometer from Ocean Optics (Florida, USA) which wavelength range includes visible wavelengths 
and short near infrared (195 - 1118 nm). The target was illuminated with a Velleman halogen lamp 
1000P64S which input power is 1000W. The spectral transmittance was measured using an integrating 
sphere. The total number of measurements of potatoes with skin was 100. Both good and defect classes 
had 50 measurements. In the skinless set, the total number of samples was 99. The good class had 49 
samples and defect class counted 50 potatoes. The classes were confirmed after the measurements 
by slicing the potatoes. For classification a procedure combining principal component analysis and a 
support vector (kernel) classifier was used. This approach led to a classification rate of 90% for whole 
tuber and 92,5% for peeled potatoes, the classification was tested on an independent set of 40 sample 
(20 healthy and 20 defect potatoes). In the same way, Zhou et al. 2015 studied a non-destructive 
detection of blackheart in potato by vis/nir transmittance spectroscopy. For the experiment, Potato 
tubers (Kexing Six var.) were purchased from a local market. To induce blackheart development, the 
samples were enclosed in zip-lock bags (one potato in each bag) and all potatoes were stored in a cold 
storage at a temperature of 4∘C and 85% relative humidity for four months. Potatoes with decay were 
taken out, and 519 tubers were finally used for experiments. For every sample, morphological properties 
including weight, maximum length, maximum width, maximum height and volume were measured 
before spectral acquisition. Transmission spectra of each tuber were collected with an apparatus that 
consisted of a spectrometer (USB4000, Ocean Optics Inc., USA) having a range from 200 to 900nm, 
an optic fiber, a collimating lens, a light source, a sample holder, a sponge flexible shield (to maintain 
the potato) and a computer. Tubers were placed centrally with the maximum height axis vertically. 
Partial least squares-linear discriminant analysis (PLS-LDA) was used to classify potatoes according to 
spectra in two classes: the tubers with blackheart and normal tubers. PLS-DA was tested on raw data 
and corrected data according to 1) weight, 2) height and 3) volume of the tubers, The PLS-DA on height 
corrected data gave the best classification rate with a classification rate of 97,11%. As claimed by the 
authors, this might be due to the fact that light transmittance decreases as the pathlength increases, 
and height correction would reduce the effect of light path variation. A simplified model was also tested 
with only six wavelengths selected (on PCA loadings), this model based on height correction led to a 
classification rate of 96,82%. These results are promising for the development of a real-time and 
portable systems for the classification of blackheart potatoes.



17 
 

2.5.2 Processed tubers  

Much research has been developed to determine the texture of cooked potatoes by non-destructive 
methods. Boeriu et al., 1998 determined texture profiling of steam cooked potatoes by NIRS. The 
texture of 20 steam-cooked potatoes samples from three cultivars, classified according to tuber size 
and DM content, were sensory evaluated after one, three and six months of storage. NIR spectra were 
measured using a Bran & Luebbe InfraAlyzer 500 spectrometer (1100-2500 nm). Therefore a 
quantitative model based on PLS regression was used to relate NIR spectra with sensory perceived 
texture. Among the sensory parameters, moist, waxy, firm and mealy were best predicted with standard 
error of prediction (SEP) ranging from 8,64 to 11,28 and coefficients of determination (R2

p) between 
0,82 and 0,89. A similar study was developed by van Dijk et al., 2002. They studied the relationship 
between sensory-perceived texture, evaluated on 12 descriptors by a trained panel of 16 panellists, 
and dry matter and NIRS for steam cooked potatoes. To quantify these relationships, three potato 
cultivars, respectively representing a firm cooking potato (cv. Nicola), a mealy cooking potato (cv. Irene), 
and a cultivar (cv. Bintje) with intermediate cooking properties, were used. Spectra of ground 
homogenised samples were recorded in the reflectance mode using an InfraAlyzer 500 (1100-2500 
nm). Regarding the relation between the sensory-perceived texture and NIRS, the results are expressed 
in terms of correlations between spectra and descriptors: moistness (R = 0,85), mealy (R = 0,79), 
crumbly (R = 0,79), waxy (R = 0,77), grainy (R = 0,73), mashable (R = 0,70), and firmness (R = 0,68). 
In the same study the authors have developed a PLS model for DM and starch quantification based on 
spectra information with respective SEP of 12,9% and 9,88%, these results were quite different and 
less performant from ones obtained in others studies. However, based on these results the authors 
conclude that the DM content rather than the cultivar determines the sensory-perceived texture of 
steam-cooked potatoes and that in the case of potatoes it can furthermore be anticipated that the NIR 
spectra contain elements related either to the DM content or to cultivar-specific properties. In 2000 
Thybo et al., reported a work which evaluated the ability of uniaxial compression, NIR and low field 
pulsed 1H nuclear magnetic resonance (LF-NMR) in predicting the sensory texture quality of 24 samples 
of cooked potato by partial least squares regression (PLSR). They completed the study with the 
chemical measurement of dry matter content and pectin methylesterase activity. The NIR spectra were 
collected on raw potatoes samples and on cooked samples using an NIR Systems Inc. 
spectrophotometer (model 6500, Silver Springs, Maryland, U.S.A.) equipped with a rotating sampling 
device. The scanning protocol was: two slices of approximately 5 mm were cut transversely 1/4 of the 
length from the stem end of 10 potato tubers. Ten slices were measured by NIR in the raw stage 
immediately after being stamped to circular slices of 37 mm in diameter to fit in the standard quartz 
sample cups closed with a compressible paper disc. Ten slices were cooked for 12 min in 350 mL water, 
cooled to room temperature for approximately 3 h, covered with plastic film, trimmed to circular slices 
(d = 37 mm) and measured by NIR. For the sensory texture analysis the potatoes were peeled and 
boiled in water for 20 to 25 min until they were cooked. All samples were analysed in three replications 
in a randomized design with six samples per sensory session. The samples were evaluated hot and 
one tuber per sample was served. A panel of ten trained assessors evaluated texture by quantitative 
descriptive texture analysis based on eight oral attributes: hardness, firmness, springiness, 
adhesiveness, graininess, mealiness, moistness and chewiness and one visual attribute: reflection from 
surface. Uniaxial compression was measured on raw and cooked potatoes. Only 64% of the sensory 
texture variation was described in a PLSR calibration by uniaxial compression, dry matter and pectin 
methylesterase activity. The results demonstrate that LF-NMR (CPMG) relaxation on raw potato 
samples can be applied as an alternative rapid method for detecting sensory texture of cooked potatoes. 
In another hand, this work point out interesting results, when NIR spectra are used as predictors of 
sensory texture, which allow to consider the use NIR for sorting fresh potatoes according to their texture 
properties. The coefficients of correlation between measured and NIRS predicted sensory texture 
attributes vary between 0,50 (Hardness) and 0,83 (Mealiness) for cooked potatoes and between 0,25 
(Adhesiveness) and 0,73 (Mealiness) for raw potatoes. Regarding the raw samples, the results were in 
some contrast to the results obtained by Boeriu et al., 1998. In 2018, Su and al., have determined 
textural property of microwave baked tuber using Fourier transform mid-infrared-attenuated total 
reflectance (FTMIR-ATR) micro spectroscopy. To develop a robust calibration model, fresh tuber 
samples from five types in terms of Rooster red potato, (origin: UK), Desiree red potato (origin: UK), 
Evangeline sweet potato (origin: Egypt), Abees sweet potato (origin: Egypt), organic Abees sweet 
potato were selected. After being peeled and sliced to the thickness of 10 mm, 25 samples of each 
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tuber variety were divided into five equal parts and then respectively baked in a lab-scale microwave 
oven (800 W) for 0, 10, 20, 30, 35s, resulting in 125 samples in total. The samples were analysed using 
a LUMOS FT-IR microscope (Bruker Optics, Germany) in ATR mode. This system was equipped with 
a liquid nitrogen cooled narrow-band photoconductive mercury cadmium telluride (MCT) detector, a 
deuterated triglycine sulfate (DTGS) detector, a highly resolving digital CCD camera, a germanium (Ge) 
ATR crystal, a solid state laser, a IR beam splitter, and a permanently aligned RockSolidTM 
interferometer. The textural property of a tuber sample was assessed by performing double 
compression test using a TA.XT.plus texture analyser (Stable Micro Systems Ltd., Godalming, Surrey, 
England) fitted with a 30 kg load cell. PLSDA was able to discriminate the tuber samples into three 
separate classes corresponding to their spectral properties. The optimized models were established 
using LWPLSR for determination of tuber textural property (TTP) in terms of hardness, resilience, 
springiness, cohesiveness, gumminess and chewiness, with correlation coefficients of prediction (RP) 
of 0,797, 0,881, 0,584, 0,574, 0,728 and 0,690, respectively. The authors concluded that the FTMIR-
ATR spectroscopy provides characteristic information allowing a better understanding of the change of 
tuber texture under various microwave baking time and that FTMIR-ATR spectroscopy can be 
considered as an effective technique for non-invasive and rapid measurement of textural property of 
tuber products. 

Acrylamide content was quantified (Ayvaz and Rodriguez-Saona, 2015; Pedreschi et al., 2010; 
Segtnan et al., 2006, Dutta et al. 2016, Adedipe et al., 2016) in potato chips and crisps. That was 
successfully conducted by Segtnan et al., 2006 on ground crisps using VIS/NIR diffuse reflectance 
(400–2500 nm). Results showed high performances for prediction models with R2p = 0,95 and RMSEP 
= 246.8 µg/kg. The spectral models are accurate enough to suggest that VIS/NIR spectroscopy can be 
used for screening of acrylamide contents in processed potato crisps. Pedreschi et al., 2010, studied 
on-line quantification of acrylamide, moisture and oil content in potato chips using near infrared 
interactance and visual reflectance imaging. Fat and dry matter of potato chips were predicted with high 
accuracy, RMSECV = 0,99% and 0,84%. For acrylamide an average prediction error of 266 µg/kg was 
achieved. Ayvaz and Rodriguez-Saona, 2015 investigated the quantification of acrylamide in 
commercial potato chips using mid-infrared (MIR) and near-infrared (NIR) spectrometers. Different 
instruments: Benchtop NIR (Excalibur 3500 FTIR, Varian, Palo Alto, CA, USA), Handheld NIR 
(MicroPhazir, Thermo Fisher, Wilmington, MA, USA), Benchtop MIR (Excalibur 3500 FTIR) and 
Portable MIR (Cary 630 FTIR, Agilent technology, Danbury, CT, USA) were tested on ground defatted 
chips . Both MIR and NIR instruments, portable and handheld systems, performed similarly and led to 
a quantification of acrylamide analysis in commercial potato chips, with RPD values between 2,0 and 
4,8 and predicted error lower than 100 µg/kg. Adedipe et al., in 2016 have obtained a prediction error 
of 135 μg/kg (R2 = 0,98) for acrylamide quantification on freeze-dried and ground French fried potatoes 
using NIR (400-2500 nm) reflectance spectra. Dutta et al., 2016 developed an automatic and efficient 
non-destructive image processing based method for acrylamide identification using KNN classification 
from potato chips. An image acquisition system was set up with four fluorescent lamps and four CFL of 
white light. Images were captured using a color digital camera located vertically from the sample at a 
distance of 25 cm. The digital camera of 8 mega pixels with auto focus is used for image acquisition 
which provides images in JPEG format. Digital image of potato chip were used for image processing to 
identify the acrylamide content in potato chip. Input image was transformed in wavelet domain for 
analysis of image features to explore the discrimination possibility between normal images and 
contaminated images. The k-nearest neighbour (KNN) classifier algorithm was used for discrimination 
with 97% accuracy for acrylamide identification. 

Prediction of volatility of tuber compositions (VTC) and cooking degree (TCD) using Hyperspectral 
imaging in combination with multivariate analysis was investigated by Su and Sun, 2016. Tuber 
samples of six cultivars (12 samples for each cultivar) were washed and peeled prior to slicing with an 
electric slicing machine. One slice was cut from each tuber (n = 12 slices for each variety). Tuber slices 
were cooked by low temperature baking in a laboratory scale oven with the temperature of 80 ± 2°C for 
five time periods including 40, 80, 120, 190, and 260 min. Every time tuber samples were first scanned 
using a line-scan hyperspectral imaging system and then weighed. The acquired hyperspectral image 
corresponding to each sample is three-dimensional including both spatial and spectral information, with 
320 pixels in x-direction, n-pixels in y direction (determined by the sample length) and 256 bands from 
897 to 1753 nm in k-direction. The results demonstrated that the multispectral imaging derived from 
hyperspectral imaging technique was a more efficient and robust instrument for non-destructive and 
real-time assessment of VTC and TCD. The best model for TCD was based on three layers back 
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propagation artificial neural network (TBPANN) with R² = 0,967 and RMSEP of lower than 0,307. For 
VTC similar results were obtained using PLSR and TBPANN with R² higher than 0,9 for almost all 
varieties and RMSEP lower than 0,017. 

Fat and moisture contents using NIR and MIR spectroscopy (1052-2000 nm and 2500-13333 nm, 
respectively) in potato chips were evaluated by Shiroma and Rodriguez-Saona, 2009. To do this, NIR 
and MIR Spectra of 15 commercial ground potato chips were collected using an AnExcalibur 3500 
Fourier-Transform IR spectrometer (Varian Inc., Palo Alto, CA). Then, the spectral data were analysed 
by PLS regression. Correlation coefficient for moisture was higher than 0,97 with standard error of cross 
validation (SECV) lower than 0,3% for both NIR and MIR techniques. Prediction models for fat had R 
equal to 0,96 and SECV lower than 1,60% for both NIR and MIR. As seen before, Pedreschi et al., 
2010 were also able to assess fat and dry matter contents with prediction models having R2

p (RMSEP) 
values of 0,99(0,99%) and 0,97(0,84%), respectively. They used a near infrared interactance and visual 
reflectance imaging. 

Best results were obtained by Ni et al., 2011 on chips using a Hitachi U-4100 spectrophotometer over 
the 800–2500 nm. Four similar types of the ‘original flavour’ potato chips from different manufacturers 
were analyzed for four quality parameters: fat, moisture, the acid and peroxide values of the extracted 
oil and for their NIR spectra (ground chips, diffuse reflectance). The best models were based on Least 
Squares Support Vector Machines (LS-SVM), with high performances for the four parameters in terms 
of RMSEP: 0,211% (Fat), 0,076% (MC), 0,101 meq.g-1 (Acid value) and 0,435 mg.Kg-1 (Peroxide value). 

Mazurek et al., 2016 compared the Soxhlet fat extraction method, with infrared, MIR and Raman 
spectroscopy for homogenized laboratory-prepared chips. Infrared spectra were recorded using a 
Magna 860 FTIR spectrometer (Thermo Nicolet, Madison, WI, USA). Diffuse reflectance spectra were 
collected using a Seagull (Harrick Scientific, Pleasantville, NY, USA) optical assembly, working in a 
DRIFT mode, mounted in the Magna unit. A 45Spec specular reflection accessory (Pike Technologies, 
Madison, WI, USA) rotated by 180° (upsidedown) was applied to obtain reflectance spectra a DRIFT-
like mode (SR). A KBr beam-splitter and a DTGS detector were set up in the MIR range while a CaF2 
beam-splitter was used in the NIR region. To register spectra in the MIR region, samples were diluted 
with a dried KBr (1:99 w/w). Raman spectra were collected using a Thermo Nicolet FT Raman 
accessory attached to the Magna 860 FTIR spectrometer equipped with CaF2 beam splitter. An indium-
gallium- arsenide (InGaAs) detector was used to carry out the measurements. Chips were prepared 
from a potato variety Verdi. Potatoes were peeled (carborundum peeler, Sirman, Italy), washed and 
sliced using a rotary slicer (Brown, Germany). Slices between 1.2 and 1.7 mm ± 0.1 mm thick were 
washed in cold water and dried using paper towelling. Approximately 200 g portions of potato slices 
were fried in a fryer at three temperatures: 150, 165 and 180 °C. To obtain chips of varying fat content, 
time of frying was increased by 20 s for succeeding portions. After discharging the oil and cooling chips, 
samples were homogenized (Retsch GM 200, Germany). Partial least squares (PLS) calibration models 
were constructed and characterized by the values of relative standard errors of prediction (RSEP), the 
results show that SR/MIR presents lower error and that the 3 others techniques led to quite similar 
results with RSEP = 1,23, 1,25%, 0,67% and 1,12% for Raman, Drift/MIR, SR/MIR and Drift/NIR 
respectively. Yee et al., 2006 tested NIR spectroscopy for separating crisps from different potato 
cultivars in order to insure constant quality of the batches. Tubers of 'Fianna' and 'Whitu', whose time 
of availability for processing overlaps, were investigated (n = 192). Potatoes were cut into flat slices of 
1.5 mm and fried in Canola oil in a fryer. Frying time was set at 180 s and oil temperature was 180°C. 
The samples were scanned using a NIRSystems 6500 spectrometer (400 – 2500 nm) in reflectance 
mode (no details are given on sample preparation prior to NIRS). Identification of cultivar in a potato 
crisp sample was achieved using linear discriminant analysis and piecewise linear discriminant 
analysis. Both approaches gave similar results in validation with a classification rate around 94% for 
the two varieties. 

3. CONCLUSION 
The literature reviewed hereinabove highlights the potential of non-destructive techniques to qualify, 
sort and/or characterize roots, tubers or bananas. The techniques used vary in terms of complexity, 
accuracy, performances, robustness, costs and ease to use. A large part of the techniques involved is 
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based on the interaction between electromagnetic radiations and matter and refers to vibrational 
properties of the chemical bonds. Because of this, these technologies are commonly known as 
vibrational spectroscopy and cover the spectral range from visible to mid infrared light. Moreover other 
noninvasive techniques, such as NMR, Raman spectroscopy, imaging, ultrasound technology and X-
ray, have shown the potential for successful applications in quality monitoring of fruits, vegetables and 
tubers. 

Researches using non-destructive techniques concern fresh and processed products. Most of the time, 
quality control or process monitoring are reached through the quantification of biochemical compounds: 
carbohydrate, protein, vitamins, minerals, carotenoids, moisture, starch, phenols and fat. Another part 
of the researches refers to physical properties such as specific gravity, skin color and texture. And some 
researches focus on contaminant quantification such as acrylamide in processed products or concern 
different quality aspects and potential use:  external or internal defects, greening, bruises, enzymatic 
browning, non-enzymatic browning, and physiological disorders. 

The products were analyzed in different conditions and presentations (intact, peeled, Freeze-dried, 
mashed, crushed, sliced, cooked, deep frying, chips and crisp). Regarding vision and spectroscopic 
techniques the measurements were done in, backscattering, diffuse reflectance, transmittance or 
interactance mode using static or moving sample holding systems. Reflectance mode measurements 
do not require contact with the sample and light levels are relatively high. However, spectral fingerprint 
is dependent of the skin properties of the tuber, in case of intact tubers. Transmission mode 
measurements can be done without contact and spectra are less dependent to skin properties. 
Transmittance mode is suitable for detecting internal disorders. Interactance mode requires to be in 
contact with the sample but provides a compromise between reflection and transmission modes and 
the direct contact between the fibre bundles and the sample eliminates the effect of surface reflection 
and maximizes the penetration depth. Depending of application different range of electromagnetic 
spectrum are concerned from Visible to Mid infrared. Hyperspectral imaging covering visible and/or NIR 
is one of the most recently emerging tools and provides advantages of vision and spectroscopic 
systems and can be used, after speeding up image acquisition time, in prediction of processing-related 
constituents as well as defects detection. HIS gives the advantage to provide both quantification and 
information on spatial distributions of the traits in the whole tuber, root or banana. There is an inevitable 
trend for multispectral imaging with only a few important bands instead of full wavelengths in the non-
destructive and rapid evaluation of food quality. 

The chemometrics methods used to achieve calibration are numerous and depend on the product and 
on the trait to be characterized. The approaches cover linear methods (PCA, PCR, PLSR, LDA, PLSDA, 
SIMCA…) and non-linear methods (ANN, Local Regression, SVM, KNN, CART...), and are divided into 
two groups: quantification and classification. In some cases classification (supervised or unsupervised) 
gives the opportunity to perform HTP screening, when quantification is not relevant. These methods 
are associated to various signal preprocessing methods which cover and solve a large part of the 
problems due to the techniques involved and to the mode of measurements. 

According to the different publications NIRS (1D or 2D) presents a real potential for high-throughput 
screening and quality control of a great number of samples of RTB. Applications concerns chemical 
characterization as well as physical properties. Some studies, mainly on potatoes and potato products, 
report evaluation of sensorial attributes (hardness, firmness, springiness, adhesiveness, graininess, 
mealiness, moistness and chewiness) using NIRS with promising results. The instrumentally measured 
texture of RTB products was also assessed using NIRS. 

However, robust models have to be based on large data sets to precisely predict quality attributes for 
new samples, especially for breeding purpose. The datasets should be obtained from different 
destinations, growing conditions and post-harvest conditions in order to cover the variability of the trait 
to be quantified/characterized. Additionally, these HTP techniques are indirect which implies that 
models accuracy highly depends on the precision of reference methods used to quantify the constituent 
or trait. 

The challenge for RTBfoods will be to translate in measurable variables or in indirect correlated 
variables the quality traits of interest in order to develop a strategy for calibration. The strategy will cover 
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the choice of the optimum non-destructive HTP technique, the sampling, the sample presentation and 
preparation, the measurement protocol, and the choice of chemometrics methods. This work, ones the 
traits identified by WP1, should be done in close collaboration between WP2 and WP3. 
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4.2 Annex 2 :  References number per year for each 
RTB: cassava, yam, banana, sweet potato and 
potato 

 
 
  Year Cassava Yam Banana Sweet 

potato Potato 

1988 0 0 0 0 1 
1989 0 0 0 0 1 
1990 0 0 0 0 2 
1992 0 0 0 0 1 
1996 0 0 0 1 1 
1997 0 0 1 0 2 
1998 0 0 0 0 3 
1999 0 1 1 0 1 
2000 0 0 1 0 1 
2001 0 0 0 0 4 
2002 0 0 0 0 1 
2003 0 0 1 0 1 
2004 0 1 1 0 1 
2005 0 0 0 0 3 
2006 0 0 0 2 2 
2007 1 0 0 0 2 
2008 0 1 0 0 2 
2009 0 0 2 1 8 
2010 0 0 2 0 5 
2011 0 0 2 1 4 
2012 0 0 5 0 2 
2013 0 1 3 1 7 
2014 1 0 1 1 5 
2015 2 2 5 0 9 
2016 2 2 6 2 13 
2017 2 0 1 0 4 
2018 0 0 4 0 1 
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