Theory and description of the 3D Hi-saFe agroforestry model

Dupraz Christian1*, Wolz Kevin J1, Lecomte Isabelle1, Talbot Grégoire1, Vincent Grégoire2, Mulia Rachmat3, Reyes Francesco1, Gosme Marie1, Van Noordwijk Meine3

1 INRA (UMR-SYSTEM), University of Montpellier, Montpellier, France.
2 IRD (UMR-AMAP), University of Montpellier, Montpellier, France.
3 ICRAF, Bogor, Indonesia

* Christian.dupraz@inra.fr

OBJECTIVES

Hi-saFe (Dupraz et al., 2019) is a mechanistic, biophysical model designed to explore the interactions within agroforestry systems that mix trees with crops. Hi-saFe has been under development since 2002 since the Silvoarable Agroforestry for Europe (SAFE) project. The model couples the STICS crop model (Brisson et al., 1998) to a new tree model. Trees and crops compete in 3D for light, water and nitrogen at a daily time step.

MODEL FEATURES

Modelled system geometry can be custom built using a grid of square cells and flexible boundary conditions, permitting the simulation of isolated trees, tree lines, stand edges, and a wide range of agroforestry patterns. An opportunistic tree root growth module (Mulia et al., 2010) accounts for the impact of resource availability on tree root architecture. Monoculture crop and tree systems are also simulated, enabling calculation of the land equivalent ratio of agroforestry.

Simulations of tree carbon storage by compartment (a & b), intercepted PAR by plant component (c & d), water uptake and other fluxes (e & f), and nitrogen uptake and other fluxes (g & h). Left panels show daily values during the 12th year of tree growth. Right panels show annual values for each year of 20 years after tree planting. In panels (a) and (b), negative values indicate belowground carbon storage. Panels (f) and (h) show water and nitrogen balances of the soil, with positive values indicating export from the soil and negative values indicating input to the soil.

PREDICTING PRODUCTIVITY AND ECOSYSTEM SERVICES

Hi-saFe is a novel tool for elucidating daily interactions for light, water, and nitrogen in agroforestry systems. Its 3D and spatially explicit form is key for accurately representing many competition and facilitation processes. Hi-saFe can provide productivity assessments and quantify some ecosystem services such as C sequestration, Nitrogen lixiviation or resilience to climate change. Hi-saFe is available online free of charge. A suite of tools for building, running, and analyzing Hi-saFe simulations is also available via the hisafer R package (Wolz, 2018).

References