

Plant Traits on Wet and Rewetted Peatlands in Central Kalimantan: A Preliminary Study

Hesti Lestari Tata¹*, Hani Sitti Nuroniah¹, Subekti Rahayu², Sidiq Pambudi²

¹Forest Research & Development Center, ²World Agroforestry Center (ICRAF) Southeast Asia *Corresponding author, email: hl.tata@gmail.com

INTRODUCTION

Plant traits are defined as any phenological, morphological, physiological, reproductive or behavioral characteristics of a species that can be quantified by measured at individual level [1,2]. Trees thriving in peat swamp forest need special adaptations (e.g. Aerenchyma) in their roots to allow oxygen uptake and movement in the largely anaerobic soil conditions [3]. Many species have 'breathing' loops in their woody roots that come above the water surface and connect to finer roots via internal air channels. These enable them to do respiration. Not all tree species are forming this root structure, however. After the fire disaster in 2015, the government of Indonesia has taken serious action in order to restore peatland degradation. Three approaches of rewetted, revegetate, and revitalization of the community, has been used as a national program in the peatland restoration. Despite of success stories of peatland restoration in Indonesia, two of four constraints to effective tropical peatland management are: (1) Lack of scientific understanding of peatland and vegetation response; (2) Lack of attractive land use options for smallholders for communities living on peatland [4].

4th World Congress on Agroforestry

World

Agroforestry Centre

STUDY SITES

Pulang Pisau district, Central Kalimantan. Peatland hydrological unit (PHU) of Sebangau-Kahayan river.

Fig 1. Vegetation in the Sebangau national park, Central Kalimantan

- 1. Sebangau National Park \rightarrow Rewetted, **Rewetted & Replanted.**
- 2. Kameloh \rightarrow Rewetted.
- 3. Repeat area of KHDTK Tumbang Nusa \rightarrow Rewetted, Rewetted & Replanted.

Sapling: > 2 m height, DBH < 5 cm

— Pole/tree: ≥ DBH 5 cm

✓ Seedling/sapling: number of

individual, species name

position in the plot

✓ Pole/tree: DBH, species name, XY

Observations:

This study aimed to:

(1) Assess the functional traits and their indicators on economical viable species that can have tolerance for high water tables in intact and rewetted, and rewetted & replanted peatland. (2) Succession on peatland restoration (Rewetted,

OBJECTIVES

Rewetted & Replanted).

Fig 2. Study Area of Pulang Pisau district, Central Kalimantan, Indonesia

Table 1. Plants at seedling stage and understorey in the three sites

Site	Typology (age)	No. Species	Species (most frequent)	Planted species
Sebangau NP	Rewetted+Replanted (13 yr)	48	Shorea balangeran, Syzygium zeylanicum	S. balangeran, Dyera polyphylla
	Rewetted	49	Sandoricum beccarianum, Elaeocarpus sp.	_
Kameloh	Rewetted	12	Stenochlaena palustris	-
	Rewetted+Replanted (2 yr)	4	Diplazium esculantum	Paraserianthes falcataria
Repeat – Tb. Nusa	Rewetted	9	Stenochlaena palustris	_
	Rewetted+Replanted (2 yr)	7	Diplazium esculantum	S. balangeran

FIELD OBSERVATION

Fig 3. Peatland restoration in 3 study sites in Central Kalimantan. (A-B). Sebangau NP, (C-D) Misik Kameloh, (E-F) RePeat Tumbang Nusa.

REFERENCES:

[1] Kunster G, Falster D, ..., Westoby M. 2015. Plant functional traits have globally consistent effects on competition. Nature. 529:204-207. [2] Kraft NJB, Godoy O, Levine J. 2015. Plant functional traits and multidimensional nature of species coexistence. PNAS 112: 797-802. [3] Cronk JK, Fennessy MS. 2009. Wetland Plants. In: Encyclopedia of Inland Waters. Pp: 590-598. Academic Press. https://doi.org/10.1016/B978-012370626-3.00060-0

[4] Van Noordwijk M, Matthews R, ..., Dewi S. 2014. Mud, muddle and models in the knowledge value chain to action on tropical peatland conservation. MITI 19:887-905.

Fig. 4. Variation of aerenchyme in the peatswamp forests. A. Combretocarpus rotundatus. B. Dyera polyphylla, C. Syzygium sp. D. Madhuca sp.

